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• The exam takes place from 9:15 to 12:15 a.m.

• Please put your valid ID on the table.

• There are five problems. Each problem provides different points as indicated. The total
number of points is 45. Check that you have received all problems.

• One page of handwritten notes is allowed as well as a calculator without equation solver.
The items will be checked in the course of the written exam.

• If you want to leave before the end of the written exam, please raise your hand and wait
until an assistant arrives at your place.

• Please respect your colleagues and do not leave between 11:45 and 12:15 am. Use remaining
time to check your solutions.

• Please remain seated while the papers are collected at the end of the exam.

• The copy must be written in blue or black pen or fountain pen, using indelible ink; pencil,
in particular, is not allowed, except for graphs.

• Put your name and Sciper number on every paper sheet (like the sticker in the
first page).

• Number each page and indicate the total number of double sheets on the first page at the
end of the exam.

• For a graph to be considered correct, it must have a legend, the axes must be named and, if
it makes sense, scaled.

• Please give at least a brief explanation of the calculations you are undertaking.
Any answer requires a justification, even a brief one.

• Useful constants: ε0 = 8.854× 10−12 Fm−1, µ0 = 4π × 10−7Hm−1, c = 3× 108ms−1.



Problem 1:

(6 pts)
Consider the charge distribution shown in the figure below. A semicircle of radius a centered at
the origin (indicated by the gray curved line) carries a uniform positive charge per unit length λ.
Two positive point charges Q are located at points (−a, a) and (a, a) (indicated by the two gray
dots).
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1. Find the expression of the electric field at the origin due to the charged semicircle only.
Express your answer in unit vector notation.

We can split the arc into individual point charges and sum up the electric field they generate
by integrating along the arc. The magnitude of each field element is given by

dE = k
dq

r2
= k

λds

a2
= k

λadθ

a2
= k

λdθ

a
. (1)

Here, ds = a ·dθ is the length of the charge element dq and θ is the angle between the charge
element and the y axis (see figure below). Again, due to symmetry, the electric field is given
purely by its y component.

dEy = dE cos(θ) = k
λ

a
cos(θ)dθ. (2)

The total electric field can now be obtained by integrating θ from −π/2 to π/2

Ey =
kλ

a

∫ π/2

−π/2

cos(θ)dθ =
kλ

a
sin θ

∣∣∣π/2
−π/2

=
2kλ

a
. (3)

Adding the direction, we have
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E⃗ =
2kλ

a
ŷ (4)

2. Find the expression of the electric field at the origin due to the point charges only. Express
your answer in unit vector notation.

Due to the given symmetry, the x components of the electric field of the two point charges
compensate each other, so the total electric field is given only by sum of the y components.
Considering that the angle θ (see figure below) between the position vectors of the charges
and the y axis is ±π/4, the total electric field is given by

Ey = − 2kQ

(a
√
2)2

cos(π/4) = − kQ√
2a2

. (5)

Adding the direction, we have

E⃗ = − kQ√
2a2

ŷ (6)
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3. Find the value of Q for which the total electric field at the origin is zero.

The electric field at the origin is zero if the vector sum of the two contributions is zero, which
imposes

E⃗ = E⃗arc + E⃗charge =
2kλ

a
ŷ − kQ√

2a2
ŷ = 0 (7)

This allows us to obtain the charge Q as

2kλ

a
=

kQ√
2a2

→ Q = 2
√
2λa. (8)
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Problem 2:

(5 pts)
A string of Christmas lights consists of LEDs covered by transparent hemispherical domes, as
shown in the figure below. The dome has a radius r of 7.50mm. The LEDs convert electrical
energy into light radiation energy at a rate of 0.096W. The LEDs radiate uniformly into the
hemispherical dome.

LED

r

1. Find the wavenumber k and angular frequency ω of the light knowing that the LEDs emit red
light with a wavelength of 650 nm. Give the analytical expressions and numerical answers.

The wave number is defined by k = 2π/λ = 2π
650×10−9 m

= 9.67 × 106m−1 and the angular
frequency is defined by ω = 2πf = 2π c

λ
= 2.9× 1015 rad/s.

2. Find the intensity of the radiation at the surface of the hemispherical dome. Give the
mathematical expression and numerical answer.

The intensity is given by definition I = P/A = P/1
2
(4πr2) = 272 W/m2, where A is the

surface of the hemisphere.

3. Find the amplitudes of the electric and magnetic fields at the surface of the hemispherical
dome. Give the mathematical expressions and numerical answers.

Alternatively, the intensity can also be given in terms of the maximal amplitude Emax of the
electric field I = 1

2
cε0E

2
max. From this we find

Emax =

√
2I

cε0
= 453V/m. (9)

and the magnetic field
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Bmax =
Emax

c
= 151× 10−6T. (10)

4. Find the average pressure that the light exerts on a perfectly absorbing particle of dust
resting on the hemispherical dome. Give the analytical expression and numerical answer.

The average radiation pressure for a perfectly absorbing speck is given by the formula ⟨Prad⟩ =
I/c = 9.07× 10−7 Pa.
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Problem 3:

(5 pts)
A rectangular loop of wire of width w, height H and resistance R travels at a constant speed v
into a uniform magnetic field B (grey region). The plane of the rectangular loop is perpendicular
to the magnetic field, which is directed into the page. A schematic of the problem is shown below.

B
w

H

B

v

v

x

1. Find the magnitude of the induced current in the rectangular loop while it is entering the
region with uniform magnetic field (as in the bottom panel of the figure above). Draw the
the direction of the induced current in the loop on a schematic (briefly qualitatively justify
your answer). Clearly indicate the region where there is the uniform magnetic field on your
drawing.

To solve this problem, we use the Faraday-Neumann-Lenz law. Due to Lenz law, the cur-
rent is circulating counter-clockwise, in order to compensate the changing flux inside. This
schematic is illustrated in the figure below

We first find the magnitude of the induced voltage by using the Faraday law
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|Vind| =
∣∣∣∣dΦdt

∣∣∣∣ = ∣∣∣∣d(BA)

dt

∣∣∣∣ = ∣∣∣∣d(Hx)

dt

∣∣∣∣ = BHv. (11)

The current in the wire is then given by

I =
Vind

R
=

BHv

R
. (12)

2. Find the magnitude of the total magnetic force exerted on the rectangular loop while it is
entering the region with uniform magnetic field (as in the bottom panel of the figure above).
Draw the direction of all the forces exerted on the loop on a schematic. Clearly indicate the
region where there is the uniform magnetic field on your drawing.

The magnetic force is given by the formula (which derives from Faraday law applied to
extended bodies) F⃗B = IL⃗× B⃗. The magnitude of the force can be computed as

FB = IHB =

(
BHv

R

)
HB =

B2H2v

R
(13)

The force is pointing inside the loop on the right vertical segment. Notice that the forces on
the two horizontal segments sum up to zero.

3. Once the loop is entirely in the region of uniform magnetic field, what is the magnitude of
the induced current ?

As the loop is entirely in the region of constant magnetic field, there is no flux change (since
the enclosed area becomes constant as well). Because of Faraday law, the induced voltage is
zero as well as the induced current.
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Problem 4:

(11 pts)

A solid insulating plastic sphere of radius a (dark grey) carries a net positive charge 3Q uni-
formly distributed throughout its interior. The insulating sphere is coated with a metallic layer of
inner radius a and outer radius 2a (light grey). The conducting metallic layer carries a net charge
−2Q. The system is represent below

a

2a

1. Find the volume charge density ρ associated with the charge uniformly distributed in the
plastic sphere in terms of the variables introduced above.

The charge density is defined as ρ = Q/V , therefore

ρ =
Qtot

V
=

3Q
4
3
πa3

=
9Q

4πa3
. (14)

2. Apply Gauss law to derive the magnitude of the electric field in the different regions: (a)
r < a (b) a < r < 2a and (c) r > 2a. For each region, draw the Gaussian surface you are
using on the associated schematic, and indicate on the surface the direction of any vectors
which appear in the mathematical expression of Gauss law. Express your answer in terms of
a,Q, r and ε0.

(a) r < a
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To solve this exercise, we apply the Gauss law,∮
S

E⃗ · dS⃗ =
Qenc

ϵ0
. (15)

As a Gaussian surface, considering the symmetries of the problem, we can use a sphere
of radius r. This schematic is illustrated in the figure below:

We hence have,

E4πr2 =
ρVenc

ϵ0
=

1

ϵ0

9Q

4πa3
4

3
πr3 =

3Qr3

ϵ0a3
, (16)

and we deduce the electric field for r < a

E =
3Qr3

ϵ0a3
1

4πr2
=

3Qr

4πϵ0a3
. (17)

(b) a < r < 2a
the electric field is zero because the region is inside a conductor.

(c) r > 2a
As in point (a) we apply Gauss’ law (again considering a sphere as a Gaussian surface)
and we get,

E4πr2 =
Q

ϵ0
. (18)

We therefore get E = Q/4πϵ0r
2, which is the electric field of a point-like charge.

3. Draw the electric field profile as a function of r in all different regions.
The field increases linearly in the region r < a, it is 0 in the region a < r < 2a and it is
decaying with 1/r2 in the region r > 2a.
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4. Find the electric potential as a function of r in all regions. Use V (∞) = 0 as the reference
point.

(a) r > 2a
Taking V (∞) = 0, we can start by deriving the potential in the region r > 2a. To do
this, it is sufficient to integrate the electric field:

V (r) = V (ref)−
∫ r

ref
E⃗ · dr⃗ = V (∞)−

∫ r

∞

Q

4πϵ0r2
dr = 0 +

Q

4πϵ0

[
1

r

]r
∞

=
Q

4πϵ0r
, (19)

which is the electric potential of a point-like charge.

(b) a < r < 2a
To find the potential inside the conductor. we use the continuity argument V (2a−) =
V (2a+):

V (r) = V (ref)−
∫ r

ref
E⃗ · dr⃗ = V (2a)−

∫ r

2a

0dr =
Q

4πϵ02a
. (20)

(c) r < a
Finally, to calculate the electric potential for r < a, we use both the continuity argument
V (a−) = V (a+), and we integrate the electric field

V (r) = V (ref)−
∫ r

ref
E⃗ · dr⃗ = V (a)−

∫ r

a

Qr

4πϵ0a3
dr =

Q

4πϵ02a
− 3Q

4πϵ0a3

[
r2

2

]r
a

(21)

=
Q

8πϵ0a

[
4− 3r2

a2

]
.

5. Draw the electric potential as a function of r in all regions.
The electric potential decays with −r2 in the region r < a, it is constant in the region

a < r < 2a and it decays with 1/r (point-like charge behavior) in the region r > 2a.
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6. Find the net charge qi residing on the inner surface of the metallic layer, and the net charge
q0 residing on the outer surface of the metallic layer.
Consider a Gaussian surface of radius a < r < 2a, we have,∮

S

E⃗ · dS⃗ =
Qenc

ϵ0
= 0, (22)

because we are inside a conductor. It implies that,

Qenc = qi +Qsphere = 0 (23)
qi = −3Q. (24)

Hence, we have,

Qconductor = qi + q0 (25)
−2Q = −3Q+ q0 (26)

q0 = +Q. (27)
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Problem 5:

(8 pts), 3 questions

Consider the electrical circuit in the figure below.

1. Calculate the potential difference between points a and b when the switch S is open. Write
explicitly which of the two points is at a higher potential.

We start by calculating Va. To do so, we evaluate the voltage across the resistors on the right
branch of the circuit.

V − Va = R1i, (7)

Va − 0 = R2i, (8)

where we have used the naming convention as shown in the figure below.

The current i flowing through the two resistors is the same because they are in series and
the switch is open. From the two equations above we can find the current:

i =
V

R1 +R2

= 1.5A. (9)
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And finally we find that Va = iR2 = 4.5V.

We now find Vb by calculating the voltage drops across the capacitors:

V − Vb =
Q1

C1

, (10)

Vb − 0 =
Q2

C2

. (11)

Since the capacitors are in series and the switch is open, they will have the same charge, so
Q1 = Q2 = Q, and combining the two equations above we find:

Vb =
C1

C1 + C2

V = 12V. (12)

This results in a potential difference

Vb − Va = 7.5V,

with Vb > Va.

2. At some point the switch S is closed. Calculate the value of the potential in point b a very
long time after the switch is closed.

When S is closed, we have Va = Vb at all times. At t = 0, the charge in the capacitors is the
same as when S was open, so Vb does not change, and Va = Vb = 12V. Then, the charge on
each capacitor begins to change. After a long time, at t = ∞, the circuit will reach a steady
state where the charge on the capacitor will not change anymore. In that situation, the
current flowing through the upper resistor is again the same one flowing through the bottom
resistor, and hence it will still hold that Va = 4.5V, as when S was open (see calculation in
the question above). Furthermore, since Vb = Va at all times, we will have Vb = 4.5V.

3. Write the Kirchoff equations for the circuit at a generic time t after the switch S has been
closed. Determine the characteristic time constant τ for the charge rebalancing between the
two capacitors.

To find the equation that describes the dynamics of this system, we first use Kirchhoff’s law.
We define the currents at each node as shown in the figure below.

We apply Kirchhoff’s current law:
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iR1 = iR2 + I (13)

iC1 + I = iC2 (14)

and thus
iR1 = iR2 + iC2 − iC1 . (15)

Next, using Va = Vb ≡ U(t), we can rewrite the current equation in terms of the voltages:

V − U(t)

R1

=
U(t)

R2

+ C2
dVC2

dt
− C1

dVC1

dt
, (16)

where VC1 and VC2 are the voltages across each capacitor: VC1 = V − U and VC2 = U .

Substituting these into the equation gives:

V − U(t)

R1

=
U(t)

R2

+ C2
dU(t)

dt
+ C1

dU(t)

dt
. (17)

Simplifying, we obtain:

(C1 + C2)
dU

dt
=

V

R1

−
(

1

R1

+
1

R2

)
U. (18)

We hence find and RC-like differential equation. We can solve it in analogy to how done in
the lectures for an RC circuit:

(C1 + C2)
dU

dt
=

(
1

R1

+
1

R2

)(
V

R2

R1 +R2

− U

)
(19)

Let us define Reff =
(

1
R1

+ 1
R2

)−1

, Ceff = C1 + C2 and Veff = V R2

R1+R2
. We can then rewrite

the above equation as:

dU

U − Veff
= − dt

ReffCeff
(20)

By integrating we find the solution:

U(t) = Veff
(
1− e−t/τ

)
.

with

τ = ReffCeff =
C1 + C2

1
R1

+ 1
R2

= 20.25µs. (21)

Note that for t → ∞ the potential U reaches the value Veff = V R2

R1+R2
, which is exactly what

found in question 2.
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Problem 6:

(7 pts)

An infinitely long ideal solenoid has n turns per unit length, and it is carrying a current I. A
schematic of the cross section of the side view and the front view of this solenoid are respectively
shown in panels (a) and (b) below.

1. Use Ampere’s law to derive the magnitude of the field produced inside this solenoid. Draw
a schematic of the orientation of the magnetic field inside the solenoid, the integration path
used in Ampere’s law and indicate any vectors which appear in the analytical expression of
Ampere’s law.

x

y

z
x

z

y

I

(a) (b)

The field outside an infinite solenoid is zero, while inside the solenoid the field is parallel to
the solenoid’s axis (x direction). To compute the magnetic field inside the solenoid we choose
a rectangular loop passing through one side of the solenoid, as shown in the figure below.

By applying Ampere’s law on this loop we find:

µ0

∑
I =

∮
B⃗ · d⃗l =

∫ B

A

B⃗ · d⃗l +
∫ C

B

B⃗ · d⃗l +
∫ D

C

B⃗ · d⃗l +
∫ A

D

B⃗ · d⃗l (28)

In the segment CD we have that B⃗ = 0. In the segments BC and DA the field is perpen-
dicular to d⃗l, so they do not contribute to the integral. Finally, in the segment AB the field
is constant and parallel to dl, so we find

µ0

∑
Ienc =

∮
B⃗ · d⃗l = B

∫ B

A

d⃗l = BL (29)
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Where L is the length of the segment AB. The current enclosed by the loop is
∑

Ienc = nLI
where n is the number of turn per meter and I the current flowing in the solenoid. Finally,
we find:

B = µ0nIsol. (30)

2. The infinitely long ideal solenoid has n = 400 turns per meter. The current flowing through
the solenoid is described by the function I = 3t2, where t represents time in seconds and
I is the current in amperes. A square coil with sides of length s = 1.3 cm is fixed inside
the solenoid such that its axis coincides with that of the solenoid, as depicted in the figure
below. At t = 0.75 seconds, the induced electromotive force (EMF) is 22.2 µV. A schematic
of the cross section of the side view and the front view of the solenoid with the coil inside
are respectively shown in panels (a) and (b) below.

Find the number of turns of the square coil. Note that the thickness of the wires can be
neglected throughout the problem. Give the analytical expression and numerical answer.

x

y

z I

(a) (b)

s

s

x
z

y

solenoid axis

The magnetic field generate by the solenoid is

B = µ0nI(t) = µ0n3t
2 (31)

The flux through the square coil is

Φ = NBAcoil = Nµ0n3t
2s2, (32)

where N is the number of turns of the square coil.

The induced EMF can be computed from Faraday’s law as:

|Eind| =
∣∣∣∣dΦdt

∣∣∣∣ = Nµ0n6ts
2 (33)

We can hence calculate the number of turns N :

N =
Eind

µ0n6ts2
= 58. (34)
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3. The current flowing through the solenoid is now constant in time and has a magnitude of
Isol = 10 mA. The square coil within the solenoid is now attached such that it can rotate
around an axis aligned along the z direction and passing through its center. An external
torque of τ⃗ext = 5Nmẑ is applied on the coil.

If the square coil axis is at a 45◦ angle relative to that of the solenoid, find the required
current that must flow through the square coil and its direction to prevent any rotational
movement of the square coil. Recall that the solenoid has 400 turns per meter, the square
coil has sides of length s = 1.3 cm. For the number of turns in the square coil, use your
answer to the question above. Give the analytical expression and numerical answer.

x

y

z I

(a) (b)

s

x
z

y

solenoid axis

coil axis
45

τext= 
5 Nm

There are two torques applied on the square coil. The external torque and a magnetic torque
created by the field. The magnetic torque is:

τ⃗mag = µ⃗× B⃗. (35)

where the magnetic moment of the coil is given by

µ⃗ = NIcoilAcoilûn = NIcoils
2ûn, (36)

where ûn is the unit vector perpendicular to the plane of the coil. Note that this vector’s
direction depends on the angle of the coil. If we call θ = π/4 the angle between the magnetic
field inside the solenoid (which is along the x axis) and ûn, then the intensity of the magnetic
torque is:

τ⃗mag = NIcoils
2B sin(θ)ẑ = NIcoils

2µ0nIsol sin(θ)ẑ (37)

In order for the coil to be still, the total torque must be zero. This means that the external
torque and the magnetic torque must be equal in intensity and opposite in direction.

|τ⃗ext| = |τ⃗mag| (38)

Icoil =
τext

NIsols2µ0n sin(θ)
= 1.48× 108A. (39)

We still need to find the direction of the current. Since the external torque is directed
along the positive z direction, then the magnetic force must be directed along the negative z
direction. For this to the case, the current in the coil must be flowing clockwise, as depicted
in the figure below.
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